Chemical Reaction Engineering

Lecture 7

Design structure for isothermal reactors

Mole balance equations

Rate laws
rate vs concentration

Stoichiometry

(to find concentration vs X)

Combine and Evaluate

1. MOLE BALANCES

2. COMBINE (First Order Gas-Phase Reaction in a PFR)

Example: batch operation

- Calculate time necessary to achieve given conversion X for irreversible $2^{\text {nd }}$ order reaction run in a batch reactor.

$$
A \longrightarrow B
$$

- Mole balance: $N_{A 0} \frac{d X}{d t}=-r_{A} V_{0}$
- Rate law: $-r_{A}=k C_{A}^{2}$
- Stoichiometry: $C_{A}=C_{A 0}(1-X)$
- Combining: $\frac{d X}{d t}=k C_{A 0}(1-X)^{2}$

$$
t=\frac{1}{k C_{A 0}} \frac{X}{(1-X)}
$$

Typical reaction times

- $1^{\text {st }}$ order reaction:

$$
t=\frac{1}{k} \ln \frac{1}{(1-X)}
$$

- $2^{\text {nd }}$ order reaction:

$$
t=\frac{1}{k C_{A 0}} \frac{X}{(1-X)}
$$

Order of magnitude time to achieve 90% conversion in a batch reactor:

Reaction Time t_{R}	First-Order $k\left(\mathrm{~s}^{-1}\right)$	Second-Order $k C_{\mathrm{A} 0}\left(\mathrm{~s}^{-1}\right)$
Hours	10^{-4}	10^{-3}
Minutes	10^{-2}	10^{-1}
Seconds	1	10
Milliseconds	1000	10,000

Activity	Time (h)
1. Charge feed to the reactor and agitate, t_{f}	$1.5-3.0$
2. Heat to reaction temperature, t_{e}	$0.2-2.0$
3. Carry out reaction, t_{R}	(varies)
4. Empty and clean reactor, t_{c}	$0.5-1.0$
Total time excluding reaction	$3 . \overline{-6} 0$

Typical reaction times

Typical cycle time in a batch reactor:

Activity	Time (h)
1. Charge feed to the reactor and agitate, t_{f}	$1.5-3.0$
2. Heat to reaction temperature, t_{e}	$0.2-2.0$
3. Carry out reaction, t_{R}	(varies)
4. Empty and clean reactor, t_{c}	$0.5-1.0$
Total time excluding reaction	$3 . \overline{-6-6.0}$

CSTR with a liquid-phase reaction:

- single CSTR mole balance:

$$
\begin{array}{ll}
\text { sign equation: } & V=\frac{F_{A 0} X}{\left(-r_{A}\right)_{\text {exit }}} \\
\text { space time: } & \tau=\frac{V}{v_{0}}=\frac{C_{A 0} X}{\left(-r_{A}\right)_{\text {exit }}}
\end{array}
$$

- rate law ($1^{\text {st }}$ order)

$$
-r_{A}=k C_{A}
$$

- Stoichiometry:

$$
C_{A}=C_{A 0}(1-X)
$$

CSTR

$$
V=\frac{F_{A 0} X}{\left(-r_{A}\right)_{\text {exit }}} \tau=\frac{V}{v_{0}}=\frac{C_{A 0} X}{\left(-r_{A}\right)_{\text {exit }}}
$$

$$
-r_{A}=k C_{A} \quad C_{A}=C_{A 0}(1-X)
$$

- Combining

$$
\tau=\frac{1}{k}\left(\frac{X}{1-X}\right) \quad X=\frac{\tau k}{1+\tau k}
$$

$$
C_{A}=\frac{C_{A 0}}{1+\tau k}
$$

- Dahmköhler number is a ratio of the rate of the reaction at the entrance to the rate of the convective transport.

$$
D a=\frac{-r_{A} V}{F_{A 0}}
$$

- For a $1^{\text {st }}$ order irreversible reaction:

$$
D a=\frac{-r_{A} V}{F_{A 0}}=\frac{k C_{A 0} V}{V_{0} C_{A 0}}=\tau k
$$

- For a $2^{\text {nd }}$ order irreversible reaction:

$$
D a=\frac{-r_{A} V}{F_{A 0}}=\frac{k C_{A 0}{ }^{2} V}{v_{0} C_{A 0}}=\tau k C_{A 0}
$$

- Gives a quick estimate of the degree of conversion
$\mathrm{Da}<0.1 \Longrightarrow \quad \mathrm{X}<10 \%$
$\mathrm{Da}>10 \quad \mathrm{X}>90 \%$

CSTR in Series

- concentration flowing to the $2^{\text {nd }}$ reactor $C_{A 1}=\frac{C_{A 0}}{1+\tau_{1} k_{1}}$
- design equation the $2^{\text {nd }}$ reactor $V=\frac{F_{A 1}-F_{A 2}}{-r_{A 2}}=\frac{v_{0}\left(C_{A 1}-C_{A 2}\right)}{k_{2} C_{A 2}}$
- so, $\quad C_{A 2}=\frac{C_{A 0}}{\left(1+\tau_{1} k_{1}\right)\left(1+\tau_{2} k_{2}\right)}$
- if the reactors have the same size and temperature:

$$
C_{A 2}=\frac{C_{A 0}}{(1+\tau k)^{2}}
$$

CSTR in Series

- in terms of Damköler number $C_{A 2}=\frac{C_{A 0}}{(1+D a)^{2}}$
- for n reactors

$$
C_{A 2}=\frac{C_{A 0}}{(1+\mathrm{Da})^{n}}
$$

- conversion:

$$
\frac{C_{\mathrm{A0}}(1-X)}{\frac{1}{(1+\mathrm{Da})^{n}}}
$$

- when the Damköler number is above 1 , a high conversion is achieved in few reactors

CSTRs in parallel

- let's consider identical reactors with the feed equally distributed, than conversion factors and the reaction rates are the same

$$
V_{i}=F_{A 0 i}\left(\frac{X}{-r_{A}}\right) \quad \text { or } \quad \frac{V}{n}=\frac{F_{A 0}}{n}\left(\frac{X}{-r_{A}}\right)
$$

- So, the situation is identical to a single reactor with the size equal to the total volume of all reactors.

Tubular reactors: liquid phase

- Design equation $F_{A 0} \frac{d X}{d V}=-r_{A}$
- in the absence of $\quad V=F_{A 0} \int_{0}^{X} \frac{d X}{-r_{A}}$ pressure drop
- Let's consider a $2^{\text {nd }}$ order reaction $\quad A \rightarrow$ products
- rate law: $-r_{A}=k C_{A}^{2}$
- stoichiometry: $C_{A}=C_{A 0}(1-X)$

$$
\begin{aligned}
& V=\frac{F_{A 0}}{k C_{A 0}^{2}} \int_{0}^{X} \frac{d X}{(1-X)^{2}}=\frac{v_{0}}{k C_{A 0}} \frac{X}{(1-X)} \\
& X=\frac{\tau k C_{A 0}}{1+\tau k C_{A 0}}=\frac{\mathrm{Da}_{2}}{1+\mathrm{Da}_{2}}
\end{aligned}
$$

Tubular reactors: gas phase

- For T, P constant, the concentration is a function of conversion
- stoichiometry: $C_{A}=\frac{F_{A}}{v}=\frac{F_{A}}{v_{0}(1+\varepsilon X)}=\frac{C_{A 0}(1-X)}{(1+\varepsilon X)}$
- rate law: $-r_{A}=k C_{A}^{2}$
- combining: $V=\frac{F_{A 0}}{k C_{A 0}^{2}} \int_{0}^{X} \frac{(1+\varepsilon X)^{2} d X}{(1-X)^{2}}$

Pressure drop in Reactors

- in the liquid phase pressure drop doesn't lead to any significant volume and therefore concentration changes can be neglected.
- in the gas phase can be an important factor

$$
\begin{aligned}
& \text { volumetric flow: } v=v_{0}(1+\varepsilon X) \frac{P_{0}}{P} \frac{T}{T_{0}} \\
& C_{j}=\frac{F_{j}}{v}=\frac{F_{A 0}\left(\Theta_{j}+v_{j} X\right)}{v_{0}(1+\varepsilon X) \frac{P_{0}}{P} \frac{T}{T_{0}}}=\frac{C_{A 0}\left(\Theta_{j}+v_{j} X\right)}{(1+\varepsilon X)} \frac{P}{P_{0}} \frac{T_{0}}{T}
\end{aligned}
$$

Pressure drop in Reactors

- to account for a pressure drop we have to use differential form of the equation

$$
F_{A 0} \frac{d X}{d W}=-r_{A}
$$

- rate law: $\quad-r_{A}=k C_{A}^{2} \quad 2 A \rightarrow B+C$
- stoichiometry: $C_{A}=\frac{C_{A 0}(1-X)}{(1+\varepsilon X)} \frac{P}{P_{0}} \frac{T_{0}}{T}$

$$
r_{A}=k\left[\frac{C_{A 0}(1-X)}{(1+\varepsilon X)} \frac{P}{P_{0}} \frac{T_{0}}{T}\right]^{2}
$$

- for isothermal operation:

$$
\frac{d X}{d W}=\frac{1}{F_{A 0}} k\left[\frac{C_{A 0}(1-X)}{(1+\varepsilon X)} \frac{P}{P_{0}} \frac{T_{0}}{T}\right]^{2}=\frac{k C_{A 0}}{v_{0}}\left[\frac{(1-X)}{(1+\varepsilon X)} \frac{P}{P_{0}}\right]^{2}
$$

Ergun equation

- pressure drop in a packed porous bed is described by Ergun equation:

$$
\frac{d P}{d z}=-\frac{G}{\rho g_{c} D_{p}}\left(\frac{1-\phi}{\phi^{3}}\right)[\underbrace{\frac{150(1-\phi) \mu}{D_{p}}}+\underbrace{1.75 G}]
$$

dominant for laminar flow dominant for turbulent flow
$\phi \quad$ porosity=volume of void/total volume
D_{p} particle diameter
$G=\rho u \quad$ superficial mass velocity, $\rho-$ gas density
$g_{c} \quad$ conversion factor, $=1$ for metric system

- in terms of catalyst weight: $W=(1-\phi) A z \rho_{c}$

Mole Balance in terms of Concentration and Molar Flow Rates

- Working in terms of number of moles (N_{A}, $N_{B}, .$.) or molar flow rates (F_{A}, F_{B} etc) rather than conversion could be more convenient at some instances (e.g. multiple reactions and membrane reactors)
- The difference in calculation: we will write mole balance for each and every species in the reactor

Isothermal reaction design algorithm

Mole balance for every species

Rate law in terms of concentration

Rate of reactions for every species from stoichiometry

Concentration for every species

Calculate pressure drop if necessary

Combine and use ODE solver
Mole Balance

Rate Law
Stoichiometry

Stoichiometry者都 ressure Drop

Jombine

$$
\mathrm{A}+2 \mathrm{~B} \rightleftarrows \mathrm{C}
$$

(1) Write mole balance on each species ${ }^{7}$

$$
\text { e.g., } \frac{d F_{A}}{d V}=r_{A}, \frac{d F_{B}}{d V}=r_{B}, \frac{\mathrm{dF}_{C}}{d V}=r_{C}
$$

(2) Write rate law in terms of concentration

$$
\text { e.g., }-r_{A}=k_{A}\left(C_{A} C_{B}^{2}-\frac{C_{C}}{K_{C}}\right)
$$

(3) Relate the rates of reaction of each species to one another

$$
\text { e.g., } \quad r_{B}=2 r_{A}, r_{C}=-r_{A}
$$

(4) (a) Write the concentrations in terms of molar flow rates for isothermal gas-phase reactions

$$
\begin{gathered}
\text { e.g., } \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{T} 0} \frac{\mathrm{~F}_{\mathrm{A}}}{\mathrm{~F}_{\mathrm{T}}} \frac{\mathrm{P}}{\mathrm{P}_{0}}, \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\mathrm{T} 0} \frac{\mathrm{~F}_{\mathrm{B}}}{\mathrm{~F}_{\mathrm{T}}} \frac{\mathrm{P}}{\mathrm{P}_{0}} \\
\text { with } \mathrm{F}_{\mathrm{T}}=\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{B}}+\mathrm{F}_{\mathrm{C}}
\end{gathered}
$$

(b) For liquid-phase reactions use concentration, e.g., $\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}}$
(5) Write the gas-phase pressure drop term in terms of molar flow rates

$$
\frac{\mathrm{dy}}{\mathrm{dW}}=-\frac{\alpha}{2 \mathrm{y}} \frac{\mathrm{~F}_{\mathrm{T}}}{\mathrm{~F}_{\mathrm{T}_{0}}} \text {, with } \mathrm{y}=\frac{\mathrm{P}}{\mathrm{P}_{0}}
$$

(6) Use an ODE solver or a nonlinear equation solver (e.g. Polymath) to combine Steps (1) through (5) to solve for for example, the profiles of molar flow rates, concentration and pressure.

Mole balance: Liquid phase

- For liquid phase with no volume change, concentration is the preferred variable

$$
a A+b B \longrightarrow c C+d D \quad \longrightarrow \quad A+\frac{b}{a} B \longrightarrow \frac{c}{a} C+\frac{d}{a} D
$$

Table 4-5. Mole Balances for Liquid-Phase Reactions
Batch $\quad \frac{d C_{\mathrm{A}}}{d t}=r_{\mathrm{A}} \quad$ and $\quad \frac{d C_{\mathrm{B}}}{d t}=\frac{b}{a} r_{\mathrm{A}}$

CSTR

$$
V=\frac{v_{0}\left(C_{\mathrm{A} 0}-C_{\mathrm{A}}\right)}{-r_{\mathrm{A}}} \quad \text { and } \quad V=\frac{v_{0}\left(C_{\mathrm{B} 0}-C_{\mathrm{B}} .\right.}{-(b / a) r_{\mathrm{A}}}
$$

PFR $\quad v_{0} \frac{d C_{\mathrm{A}}}{d V}=r_{\mathrm{A}} \quad$ and $\quad v_{0} \frac{d C_{\mathrm{B}}}{d V}=\frac{b}{a} r_{\mathrm{A}}$

PBR

$$
v_{0} \frac{d C_{\mathrm{A}}}{d W}=r_{\mathrm{A}}^{\prime} \quad \text { and } \quad v_{0} \frac{d C_{\mathrm{B}}}{d W}=\frac{b}{a} r_{\mathrm{A}}^{\prime}
$$

Mole balance: Gas phase

- For e.g. PFR, for every species $\frac{d F_{j}}{d V}=r_{j}$
- Generic power rate law

$$
-r_{A}=k_{A} C_{A}^{\alpha} C_{B}^{\beta}
$$

- Concentration in terms of flow rates

$$
C_{j}=C_{T 0} \frac{F_{j}}{F_{T}} \frac{T_{0}}{T} \frac{P}{P_{0}}{ }^{y}
$$

- The pressure drop equation

$$
\frac{d y}{W}=\frac{-\alpha}{2 y} \frac{F_{T}}{F_{T 0}}
$$

- The total flow rate

$$
F_{T}=\sum_{j=1}^{N} F_{j}
$$

Microreactors

- characterized by high surface area to volume ratios
- thus, heat and mass transfer resistances are reduced or eliminated
- surface catalyzed reactions can be facilitated
- hot spots in highly exothermic reactions can be eliminated
- highly exothermic reactions can be carried out isothermically
- leak or microexplosion in a single unit causes a minimal damage to the system
- shorter residence times and narrower residence time distribution

Chemical synthesis with microreactors

- Advantages:
- scale-out instead of scale-up
- flexible
- easy to change the production volume

Univ. of Texas microreactor for biodiesel production: cost reduction $40 \mathrm{c} / \mathrm{gallon}$

G. Jovanovic, Univ. of Oregon, microreactor for biodiesel production:

Chemical synthesis with microreactors

- not every reaction benefits from microreactor
- however:
- exothermic reactions are usually easier to control in microreactors due to better temperature control (reactions involving explosives, regionselective reactions)
- photochemical reactions can be easier arranged to absorb more light
- multistep reactions (e.g. peptide synthesis)
- biphasic reactions (gas-liquid)
- synthesis of analytically pure components

Microreactor: example

$$
2 \mathrm{NOCl} \longrightarrow 2 \mathrm{NO}+\mathrm{Cl}_{2}
$$

- Gas reaction carried out at $425^{\circ} \mathrm{C}$ and 1641 kPa . Pure NOCL is fed and the reaction follows elementary rate law. It's desired to produce $20 \mathrm{t} / \mathrm{ye}$ y in a bank of 10 microreactors in parallel. Each microreactor has 100 channels, each 0.2 mm sq and 250 mm long. Plot the molar flow rate as a function of volume down the length of the reactor.
- The rate constant $\mathrm{k}=0.29 \mathrm{dm}^{3} / \mathrm{mol} \cdot \mathrm{s}$ at $500 \mathrm{~K}, \mathrm{E}=24 \mathrm{kcal} / \mathrm{mol}$
- To produce 20 t per year at 85% conversion requires $2.26 \times 10^{-5} \mathrm{~mol} / \mathrm{s}$ per channel

Example

$2 \mathrm{NOCl} \longrightarrow 2 \mathrm{NO}+\mathrm{Cl}_{2}$

$$
A \longrightarrow B+\frac{1}{2} C
$$

- Mole balance $\frac{d F_{A}}{d V}=r_{A} \quad \frac{d F_{B}}{d V}=r_{B} \quad \frac{d F_{C}}{d V}=r_{C}$
- Rate law

$$
-r_{A}=k C_{A}^{2}
$$

- Stoichiometry $r_{B}=2 r_{C}=-r_{A}$

$$
\begin{aligned}
& C_{A}=C_{T 0} \frac{F_{A}}{F_{T}} ; C_{B}=C_{T 0} \frac{F_{B}}{F_{T}} ; C_{C}=C_{T 0} \frac{F_{C}}{F_{T}} \\
& F_{T}=F_{A}+F_{B}+F_{C}
\end{aligned}
$$

Example

（3）POLYMATH 5.1

Eile Edit Program Window Examples Help									
Open	Save		圆	$\begin{aligned} & \frac{1}{\text { 喿 }} \\ & \text { DEQ } \end{aligned}$		Calculate	Units	Const	$\begin{gathered} \text { 畓 } \end{gathered}$

Ordinary Differential Equations Solver

	Differential equations $/$ explicit equations	
1	$d(F a) / d(\mathrm{~V})=$ ra	Initial value
2	$d(\mathrm{Fb}) / d(\mathrm{~V})=\mathrm{rb}$	$2.26 \mathrm{e}-5$
3	$d(\mathrm{Fc}) / d(\mathrm{~V})=\mathrm{rc}$	0
4	$\mathrm{~T}=698$	0
5	$\mathrm{C}(0)=1641 / 8.314 / \mathrm{T}$	n．a．
6	$\mathrm{Ft}=\mathrm{Fa}+\mathrm{Fb}+\mathrm{Fc}$	n．a．
7	n．a	

7 Ca Clomp
8 E $=24000$

g	$\mathrm{k}=0.29^{\times} \exp \left(\mathrm{E} / 1.987^{*}(1 / 500-1 / \mathrm{T})\right]$

10 Fa0 $=0.0000226$

11	$\mathrm{v} 0=\mathrm{Fa} 0 / \mathrm{Ct0}$

12	$r a=k \times a^{\wedge} 2$

$13 \times=1-\mathrm{Fa} / \mathrm{Fa} 0$
14 rb＝－ ra

15	$\mathrm{rc}=-\mathrm{ra} / 2$

Differential Equations： 3 Auxiliary Equations： 12

Membrane reactors

- used to increase conversion when the reaction is thermodynamically limited (e.g. with small K)
- or to increase selectivity in when multiple reactions are occurring
(b)

inert membrane reactor with catalyst pellet on the feed side (IMRCF)
(c)

Membrane reactors

$$
\mathrm{C}_{6} \mathrm{H}_{12} \rightleftarrows 3 \mathrm{H}_{2}+\mathrm{C}_{6} \mathrm{H}_{6}
$$

H_{2} leaves through the pores
$A \rightleftarrows 3 B+C$

- Mole balances: $\frac{d F_{A}}{d V}=r_{A} \quad \frac{d F_{C}}{d V}=r_{C}$

Membrane reactors

$$
\frac{d F_{B}}{d V}=r_{B}-R_{B}
$$

- Assuming $C_{B S}=0$ and introducing $k_{c}=k_{c}^{\prime} a \Rightarrow R_{B}=k_{c} C_{B}$

Example: Dehydrogenation reaction

- Typical reactions:
- dehydrogenation of ethylbenzene to styrene;
- dehydrogenation of butane to butene
- dehydrogenation of propane to propene

$\mathrm{C}_{4} \mathrm{H}_{10} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}$
$\mathrm{C}_{3} \mathrm{H}_{8} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}_{2}$
- Problem: for a reaction of type $A \rightleftarrows B+C$ where an equilibrium constant $\mathrm{Kc}=0.05 \mathrm{~mol} / \mathrm{dm}^{3}$; temperature $227^{\circ} \mathrm{C}$, pure A enters chamber at 8.2 atm and $227^{\circ} \mathrm{C}$ at a rate of $10 \mathrm{~mol} / \mathrm{min}$
- write differential mole balance for A, B, C
- Plot the molar flow rate as a function of space and time
- calculate conversion at $\mathrm{V}=400 \mathrm{dm}^{3}$.
- Assume that the membrane is permeable for B only, catalyst density is $\mathrm{rb}=1.5 \mathrm{~g} / \mathrm{cm}^{3}$, tube inside diameter 2 cm , reaction rate $\mathrm{k}=0.7$ and transport coefficient $\mathrm{k}_{\mathrm{c}}=0.2 \mathrm{~min}^{-1}$.

Example

- Mole balance:

$$
\frac{d F_{A}}{d V}=r_{A} \quad \frac{d F_{B}}{d V}=r_{B}-R_{B} \quad \frac{d F_{C}}{d V}=r_{C}
$$

- Rate law

$$
-r_{A}=k\left(C_{A}-\frac{C_{B} C_{C}}{K_{C}}\right)
$$

- Transport out of the reactor

$$
R_{B}=k_{C} C_{B}
$$

- Stoichiometry

$$
\begin{aligned}
C_{A} & =C_{T 0} \frac{F_{A}}{F_{T}} \quad C_{B}=C_{T 0} \frac{F_{B}}{F_{T}} \quad C_{C}=C_{T 0} \frac{F_{C}}{F_{T}} \\
C_{A} & =C_{T 0}=\frac{P_{0}}{R T_{0}}=0.2 \mathrm{~mol} / \mathrm{dm}^{3} \\
r_{B} & =r_{C}=-r_{A}
\end{aligned}
$$

Example

- POLYMATH solution

Use of Membrane reactors to enhance selectivity

$$
A+B \rightarrow C+D
$$

- \mathbf{B} is fed uniformly through the membrane

Unsteady state operation of stirred reactors

- during the start up of a reactor:
- slow addition of component \mathbf{B} to a large quantity of \mathbf{A} e.g. when reaction is highly exothermic or unwanted side reaction can occur at high concentration of B
- one of the products is vaporized and withdrawn continuously.

Startup of CSTR

- Conversion doesn't have any meaning in startup so we have to use concentrations

$$
F_{A 0}-F_{A}+r_{A} V=\frac{d N_{A}}{d t}
$$

- For liquid phase with constant overflow

$$
C_{A 0}-C_{A}+r_{A} \tau=\tau \frac{d C_{A}}{d t}, \tau=\frac{V_{0}}{v_{0}}
$$

- For the $1^{\text {st }}$ order reactions

$$
\begin{aligned}
& -r_{A}=k C_{A}, \frac{d C_{A}}{d t}+\frac{1+\tau k}{\tau} C_{A}=\frac{C_{A 0}}{\tau} \\
& C_{A}=\frac{C_{A 0}}{1+\tau k}\left\{1-\exp \left[-(1+\tau k) \frac{t}{\tau}\right]\right\}
\end{aligned}
$$

- e.g. to reach 99\% steady state concentration

$$
C_{A S}=\frac{C_{A 0}}{1+\tau k}, t_{s}=4.6 \frac{\tau}{1+\tau k}
$$

$$
\begin{aligned}
& t_{s}=4.6 \tau \\
& t_{s}=4.6 / k
\end{aligned}
$$

Semibatch reactors

- semibatch reactors could be used e.g. to improve selectivity

$$
\begin{array}{ll}
A+B \xrightarrow[D]{k_{D}} D & r_{D}=k C_{A}^{2} C_{B} \\
A+B \xrightarrow{k_{U}} U & r_{U}=k C_{A} C_{B}^{2}
\end{array}
$$

- selectivity:

$$
S_{D / U}=\frac{r_{D}}{r_{U}}=\frac{k_{D}}{k_{U}} \frac{C_{A}}{C_{B}}
$$

Semibatch equations

- For component \mathbf{A} :

$$
\begin{aligned}
& r_{A} V=\frac{d N_{A}}{d t}=\frac{d\left(C_{A} V\right)}{d t}=\frac{V d C_{A}}{d t}+\frac{C_{A} d V}{d t} \\
& V=V_{0}+v_{0} t \\
& -v_{0} C_{A}+r_{A} V=\frac{V d C_{A}}{d t} \Rightarrow \frac{d C_{A}}{d t}=r_{A}-\frac{v_{0}}{V} C_{A}
\end{aligned}
$$

- For component B:

$$
\begin{aligned}
& r_{A} V=\frac{d N_{B}}{d t}=r_{B} V+F_{B 0} \\
& \frac{V d C_{A}}{d t}+\frac{C_{A} d V}{d t}=r_{B} V+v_{0} C_{B 0} \\
& \frac{d C_{B}}{d t}=r_{B}+\frac{v_{0}}{V}\left(C_{B 0}-C_{A}\right)
\end{aligned}
$$

Problems

- P4-19: A microreactor is used to produce a phosgene in a gas phase. The microreactor is 20 mm long, 500 $\mu \mathrm{m}$ in diameter and packed with catalyst particles $35 \mu \mathrm{~m}$ in diameter. The entering pressure is 830 kPa and the entering flow to each reactor is equimolar. Molar flow rate for CO_{2} is $2 \times 10^{-5} \mathrm{~mol} / \mathrm{s}$, the volumetric flow $2.83 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}$, the weight of catalyst in one microreactor
 $W=3.5 \times 10^{-6} \mathrm{~kg}$. the reactor is kept isothermal at $120^{\circ} \mathrm{C}$. The rate law:

$$
-r_{A}^{\prime}=k_{A} C_{A} C_{B}
$$

Problems

- P4-26: A large component in the processing train for fuel cell technology is the water gas shift membrane reactor, where H_{2} can diffuse out the sides of the membrane while the other gases cannot.

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

- Based on the following information plot the concentration and molar flow rates of each of the reacting species down the length of the membrane reactor. Assume: the volumetric feed is $10 \mathrm{dm}^{3} / \mathrm{min}$ at 10 atm ; equil molar feed of CO and water vapour with $\mathrm{C}_{\text {T0 }}=0.4 \mathrm{~mol} / \mathrm{dm}^{3}$, equilibrium constant $\mathrm{K}_{\mathrm{e}}=1.44$, reaction rate $\mathrm{k}=1.37 \mathrm{dm}^{6} / \mathrm{mol} \cdot \mathrm{kg}$ cat $\cdot \mathrm{min}$, mass transfer coefficient for $\mathrm{H}_{2} \mathrm{kc}=0.1 \mathrm{dm}^{3} / \mathrm{mol} \cdot \mathrm{kg}$ cat $\cdot \mathrm{min}$.Compare with PFR.

Home problem analysis

P3-13, Hippo's digestion

Home problem 3-13: nitroaniline synthesis

- the disappearance rate of orthonitrochlorobenzene

$$
r_{a}=-\frac{d[\mathrm{ONCB}]}{d t}=-k[\mathrm{ONCB}]\left[\mathrm{NH}_{3}\right]
$$

- Stoichiometric table:

			Change	Remaining*	Concentration ${ }^{* *}$
ONCB	A	$\mathrm{F}_{\mathrm{A} 0}$	$-\mathrm{F}_{\mathrm{A} 0} \mathrm{X}$	$\mathrm{F}_{\mathrm{A} 0}(1-\mathrm{X})$	$\mathrm{C}_{\mathrm{A} 0}(1-\mathrm{X})$
NH_{3}	B	$\mathrm{~F}_{\mathrm{B} 0}$	$-2 \mathrm{~F}_{\mathrm{A} 0} \mathrm{X}$	$\mathrm{F}_{\mathrm{A} 0}\left(\Theta_{\mathrm{B}}-\mathrm{X}\right)$	$\mathrm{C}_{\mathrm{A} 0}\left(\Theta_{\mathrm{B}}-\mathrm{X}\right)$
NA	C	$\mathrm{F}_{\mathrm{C} 0}$	$\mathrm{~F}_{\mathrm{A} 0} \mathrm{X}$	$\mathrm{F}_{\mathrm{A} 0}\left(\Theta_{\mathrm{C}}+\mathrm{X}\right)$	$\mathrm{C}_{\mathrm{A} 0}\left(\Theta_{\mathrm{C}}+\mathrm{X}\right)$
$\mathrm{NH}_{4} \mathrm{Cl}$	D	$\mathrm{F}_{\mathrm{D} 0}$	$2 \mathrm{~F}_{\mathrm{A} 0} \mathrm{X}$	$\mathrm{F}_{\mathrm{A} 0}\left(\Theta_{\mathrm{D}}+2 \mathrm{X}\right)$	$\mathrm{C}_{\mathrm{A} 0}\left(\Theta_{\mathrm{D}}+2 \mathrm{X}\right)$

*) ONCB is a limiting reagent (from stoichiometry)
${ }^{* *}$) reaction in liquid, thus the volume is constant

Home problem 3-13: nitroaniline synthesis

- the disappearance rate of orthonitrochlorobenzene in terms of conversion

$$
r_{a}=-k[O N C B]\left[N H_{3}\right]=-k C_{A 0}^{2}(1-X)\left(\Theta_{B}-X\right)
$$

- rate of the reaction at $188^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 288^{\circ} \mathrm{C}$ when $\mathrm{X}=0.9$:

$$
k(T)=A e^{-E / R T} \quad \Rightarrow \quad k\left(T_{2}\right)=k\left(T_{1}\right) e^{-\frac{E}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]}
$$

$k\left(188^{\circ} \mathrm{C}\right)=1.7 \cdot 10^{-3}$	$r_{a}=3.2 \cdot 10^{-4}$
$k\left(25^{\circ} \mathrm{C}\right)=k\left(188^{\circ} \mathrm{C}\right) e^{-\frac{-1127 \text { cal/ } / \mathrm{mol} 4.187 \mathrm{~J} / \mathrm{cal}}{8.31}\left[\frac{1}{25+273}-\frac{1}{25+188}\right]}=2 \cdot 10^{-6}$	$r_{a}=3.7 \cdot 10^{-7}$
$k\left(288^{\circ} \mathrm{C}\right)=1.5 \cdot 10^{-2}$	$r_{a}=2.85 \cdot 10^{-3}$

Home problem 3-13: nitroaniline synthesis

- find the reactor volume for CSTR at $\mathrm{X}=0.9$: $\quad V=\frac{F_{A 0} X}{-r_{a}}=\frac{\nu C_{A 0} X}{-r_{a}}$

	Reaction rate	Volume $(\mathrm{X}=0.9)$
$25^{\circ} \mathrm{C}$	$3.7^{*} 10^{-7}$	$8.6^{*} 10^{3} \mathrm{~m}^{3}$
$188^{\circ} \mathrm{C}$	$3.2^{*} 10^{-4}$	$10.2 \mathrm{~m}^{3}$
$288^{\circ} \mathrm{C}$	$2.9^{*} 10^{-3}$	$1.14 \mathrm{~m}^{3}$

- find the reactor volume for $P F R$ at $X=0.9$:

at $25^{\circ} \mathrm{C}: \mathrm{V}=1.14^{*} 10^{3} \mathrm{~m}^{3}$

Hippo's stomach

- Our starting point: $X_{0}=0 ; X_{1}=0.34 X_{2}=0.45$;
- Fitting the data

Levenspiel Plot for Autocataltyic Digestion in a CSTR

Levenspiel Plot for Cataltyic Digestion in a PFR

- flow rate $40 \mathrm{~kg} /$ day, with density of grass $365 \mathrm{~kg} / \mathrm{m}^{3}$, volumetric rate $0.13 \mathrm{~m}^{3} / \mathrm{day}$

Hippo's digesting problem

- The hippo has picked up a river fungus and now the effective volume of the CSTR stomach compartment is only $0.2 \mathrm{~m}^{3}$. The hippo needs 30% conversion to survive. Will the hippo survive?

CSTR:

$$
V=\frac{F_{A 0} X_{1}}{-r_{A}} \quad X_{1}=\frac{V_{02} X_{01}}{V_{01}}=\frac{0.2 \cdot 0.45}{0.34}=0.26
$$

$$
\text { PFR: } \quad \frac{m_{A 0}}{-r_{A K K 2}}=\frac{0.075 m^{3}(1+16.5(1-X))}{(1-X)}
$$

$$
V(X)=\int_{0.26}^{x} \frac{0.075 \cdot(1+16.5(1-x)}{1-x} d x
$$

if V pfr $=0.15 \mathrm{~m} 3$ as before, $\mathrm{X} 1 \sim 0.31$, so the hippo survives

Hippo's digesting problem

- The hippo had to have surgery to remove a blockage. Unfortunately, the surgeon, Dr. No, accidentally reversed the CSTR and PFR during the operation. Oops!! What will be the conversion with the new digestive arrangement? Can the hippo survive?

PFR: $\quad V(X)=\int_{0.0}^{x_{1}} \frac{0.075 \cdot(1+16.5(1-x)}{1-x} d x \quad \square$

$$
\text { if } \mathrm{V}_{\mathrm{pfr}}=0.15 \mathrm{~m}^{3} \text { as before, } \mathrm{X}_{1} \sim 0.11
$$

Autocatalytic Reaction
CSTR:

$V=\frac{F_{A 0}\left(X_{2}-X_{1}\right)}{-r_{A}} \quad$ if $\mathrm{V}_{\text {pfr }}=0.45 \mathrm{~m}^{3}$ as before, $\mathrm{X}_{2} \sim 0.42$

